2906

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

Does the Vulnerability Threaten Our Projects?
Automated Vulnerable API Detection for
Third-Party Libraries

Fangyuan Zhang *“, Lingling Fan ®, Sen Chen

Abstract—Developers usually use third-party libraries (TPLs)
to facilitate the development of their projects to avoid reinventing
the wheels, however, the vulnerable TPLs indeed cause severe
security threats. The majority of existing research only con-
sidered whether projects used vulnerable TPLs but neglected
whether the vulnerable code of the TPLs was indeed used by the
projects, which inevitably results in false positives and further
requires additional patching efforts and maintenance costs (e.g.,
dependency conflict issues after version upgrades). To mitigate
such a problem, we propose VAScanner, which can effectively
identify vulnerable root methods causing vulnerabilities in TPLs
and further identify all vulnerable APIs of TPLs used by Java
projects. Specifically, we first collect the initial patch methods
from the patch commits and extract accurate patch methods by
employing a patch-unrelated sifting mechanism, then we further
identify the vulnerable root methods for each vulnerability by
employing an augmentation mechanism. Based on them, we
leverage backward call graph analysis to identify all vulnerable
APIs for each vulnerable TPL version and construct a database
consisting of 90,749 (2,410,779 with library versions) vulnerable
APIswith 1.45% false positive proportion with a 95% confidence
interval (CI) of [1.31%, 1.59%] from 362 TPLs with 14,775
versions. The database serves as a reference database to help
developers detect vulnerable APIs of TPLs used by projects. Our
experiments show VAScanner eliminates 5.78% false positives
and 2.16% false negatives owing to the proposed sifting and
augmentation mechanisms. Besides, it outperforms the state-of-
the-art method-level vulnerability detection tool in analyzing
direct dependencies, Eclipse Steady, achieving more effective
detection of vulnerable APIs. Furthermore, to investigate the
real impact of vulnerabilities on real open-source projects, we
exploit VAScanner to conduct a large-scale analysis on 3,147

Received 7 August 2023; revised 22 June 2024; accepted 25 August 2024.
Date of publication 5 September 2024; date of current version 14 November
2024. This work was supported in part by the National Natural Science
Foundation of China under Grant 62102197 and Grant 62202245, and in
part by the Natural Science Foundation of Tianjin under Grant 22JCY-
BJC01010. Recommended for acceptance by L. Ma. (Corresponding author:
Lingling Fan.)

Fangyuan Zhang and Miaoying Cai are with DISSec, NDST, College
of Computer Science, Nankai University, Tianjin 300350, China (e-mail:
fangyuanzhang @mail.nankai.edu.cn; miaoyingcai @mail.nankai.edu.cn).

Lingling Fan and Sihan Xu are with DISSec, NDST, College of Cyber
Science, Nankai University, Tianjin 300350, China (e-mail: linglingfan@
nankai.edu.cn; xusihan@nankai.edu.cn).

Sen Chen is with the College of Intelligence and Computing, Tianjin
University, Tianjin 300354, China (e-mail: senchen@tju.edu.cn).

Lida Zhao is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798 (e-mail: LIDA0O1@
e.ntu.edu.sg).

Digital Object Identifier 10.1109/TSE.2024.3454960

, Member, IEEE, Miaoying Cai

, Sihan Xu”, and Lida Zhao

projects that depend on vulnerable TPLs, and find only 21.51%
of projects (with 1.83% false positive proportion and a 95% CI
of [0.71%, 4.61%]) were threatened through vulnerable APIs,
demonstrating that VAScanner can potentially reduce false
positives significantly.

Index Terms—Vulnerability detection, software composition
analysis, static analysis.

I. INTRODUCTION

AVA developers frequently incorporate third-party libraries

(TPLs) to speed up software development. However, the
utilization of TPLs may introduce security threats [1], [2].
According to an open-source security and risk analysis report
released by Synopsys [3], 97% of the 2,409 codebases con-
tained open-source components, and 81% of them contained
at least one known vulnerability. To mitigate such a severe
problem, software composition analysis (SCA) [4], [5], [6],
[71, [81, [9], [10], [11], [12], [13] is typically used to identify
vulnerable TPLs. A couple of SCA tools have been suggested
including Eclipse Steady [14], Dependabot [7], OSSIndex [8],
OWASP Dependency Check [5], etc.

However, from the detection side, nearly all SCA tools can
only determine whether vulnerable TPLs are depended on by
projects, but cannot tell whether vulnerable APIs are actually
invoked, resulting in false positives introduced by analysis at
the library level. From the patch side, vulnerabilities introduced
by TPLs can have unpredictable effects on the developers’
projects. Once the vulnerabilities are detected, updating to a
new version is the most straightforward way. However, it may
cause dependency conflict issues [15], [16], [17], [18], [19] and
compatibility issues [20], [21], [22], [23], which will require
substantial maintenance costs. Consequently, it is imperative to
precisely determine whether the project is threatened by known
vulnerabilities. In other words, if the vulnerability has a real
negative impact on the project in practice, developers can gener-
ate a patch immediately to avoid an exploit of the vulnerability.
If the vulnerability has no effect on the project, the handling
of vulnerable TPLs is not urgent and can be incorporated into
the regular development cycle. Thus, the real impact analysis
of vulnerable TPLs at the method level is urgently needed no
matter from the perspective of detection or patching [24].

As far as we know, Eclipse Steady [6], [25], [26] is the only
open-source work that provides a forward reachability analysis

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-9599-1369
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0009-0002-2747-3169
https://orcid.org/0000-0002-6887-6231
https://orcid.org/0009-0005-9832-8948
mailto:fangyuanzhang@mail.nankai.edu.cn
mailto:miaoyingcai@mail.nankai.edu.cn
mailto:linglingfan@nankai.edu.cn
mailto:linglingfan@nankai.edu.cn
mailto:xusihan@nankai.edu.cn
mailto:senchen@tju.edu.cn
mailto:LIDA001@\protect \penalty -\@M e.ntu.edu.sg

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

at the fine-grained method level for users. However, accord-
ing to our analysis, we conclude the following deficiencies in
Steady: (1) The inaccuracy of patch method extraction. Steady
considers the methods whose abstract syntax trees have been
changed in patch commits as patch methods, however, patch-
unrelated methods may exist in patch commits, leading to false
positives. (2) The incompleteness of vulnerable root method
identification. Steady obtains vulnerable root methods directly
from patch commits, however, some vulnerable root methods
may exist in the commits that are not recognized or marked as
patch commits. The incomplete identification would cause false
negatives of vulnerable paths. (3) Low efficiency of vulnerable
path analysis. Steady conducts forward reachability analysis
for each TPL with low efficiency due to complex dependency
analysis.

Therefore, in this paper, we aim to address the aforemen-
tioned problems to evaluate the real impact of vulnerable TPLs
on projects. However, we are facing the following challenges:
(1) How to extract accurate patch methods from patch commits?
As we all know, not all modified methods in a patch commit
are patch methods. Therefore, we need to sift patch-unrelated
methods out on the patch commit, to extract precise patch meth-
ods. (2) How to obtain comprehensive and precise vulnerable
root methods from patch commits? Due to the incompleteness
of patch commits provided [27], it is not comprehensive to
only handle the patch commits. (3) How to accurately scan the
vulnerable code of libraries in the projects with less resource
overhead? To ensure fewer resources spent during scanning, we
need a comprehensive set of detected vulnerable APIs of known
vulnerable TPLs.

To fill the gap, we propose VAScanner (Vulnerable API
Scanner), an effective vulnerable API detection approach, to
assess the impact of OSS vulnerabilities in Java projects. We
first collect public patch commits based on the vulnerability
knowledge database and map the changed source code files
involved in patch commits with class files in TPLs. We collect
diff methods from patch commits as initial patch methods and
then sift out patch-unrelated methods to extract accurate patch
methods. We propose an augmentation mechanism to identify
vulnerable root methods based on these patch methods. Then we
perform backward call-graph analysis on vulnerable root meth-
ods and construct a vulnerable API database mapping with the
relation among the vulnerable library versions, CVEs, and vul-
nerable APIs, which includes 90,749 unique vulnerable APIs
(2,410,779 with library versions) from 362 TPLs with 14,775
vulnerable versions involving 502 CVEs. Based on the results,
developers can figure out whether vulnerable libraries need
to be patched at this time and prioritize the patches, thereby
reducing additional patching efforts and maintenance costs.

To demonstrate the effectiveness of VAScanner, we con-
ducted comprehensive experiments. We took an in-depth
analysis of the patch-unrelated methods sifted out by the
patch-unrelated sifting mechanism, vulnerable root methods
introduced by the augmentation mechanism, and vulnerable
APIs in the vulnerable API database. Moreover, we summa-
rized 5 patterns of added patch methods, to analyze the fixed
intention of introducing them. Based on statistical results, we

2907

sifted out 1,352 patch-unrelated methods with 98.06% precision
and augmented 249 vulnerable root methods which were absent
in patch commits with 93.57% precision. And the vulnerable
API database constructed by VAScanner contains a total of
90,749 unique vulnerable APIs with a false positive proportion
of 1.45% and a 95% CI of [1.31%, 1.59%]. Furthermore, to
demonstrate the effectiveness of our novel mechanisms, we
conducted an ablation study on VAScanner and VAScanner-
with different mechanisms, and the result shows VAScanner
eliminates 5.78% false positives and 2.16% false negatives.
Subsequently, we compared VAScanner with the state-of-the-
art tool, Eclipse Steady. The experimental results have shown
that VAScanner outperforms Steady in analyzing direct depen-
dencies, achieving more comprehensive method-level detection
(#Cases: 214 vs. 95). Specifically, Steady (Avg time: 769s)
exists 61.71% false negatives, while VAScanner (Avg time:
353s) yielded 2.97% false positives and 20.45% false negatives.
Besides, our large-scale analysis on 3,147 real-world projects
shows that only 21.51% of projects (with 1.83% false positive
proportion and a 95% CI of [0.71%, 4.61%]) were potentially
threatened by vulnerable APIs of TPLs, indicating the effec-
tiveness of VAScanner.

In summary, we make the following contributions:

* We proposed VAScanner, an effective and efficient tool
that can detect vulnerable APIs from TPLs used by Java
projects, reducing false positives of vulnerabilities.

e We proposed two mechanisms to achieve accurate and
complete vulnerable API identification for vulnerable li-
braries, i.e., a sifting mechanism to sift out patch-unrelated
methods and an augmentation mechanism to augment the
vulnerable root methods, which eliminates 5.78% false
positives and 2.16% false negatives.

* We constructed a reusable database including 90,749 vul-
nerable APIs(2,410,779 with library versions) with 1.45%
false positive proportion with a 95% CI of [1.31%, 1.59%]
based on the identification results of VAScanner, which
assists in achieving more efficient vulnerability detection
than forward reachability analysis.

* We compared VAScanner with the state-of-the-art tool,
Eclipse Steady. The experimental result demonstrates that
VAScanner achieves more effective method-level identi-
fication in analyzing direct dependencies.

II. BACKGROUND & CONCEPTS
A. Background

The Maven Ecosystem. The Maven ecosystem [28] plays
a crucial role in the Java landscape. It contains nearly 2,000
repositories and over 37 million packages. Each maven package
is distinctly identified by the combination of Groupld, Artifac-
tld, and Version (GAV). Maven provides a simple and consis-
tent approach by utilizing the configuration file (pom.xml) to
effectively manage project dependencies, streamline the build
process, and facilitate release development. Furthermore, since
a maven package can be utilized as a TPL by other projects, it
can be considered a project as well as a Java TPL.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2908

Commitl 2...n- T TPLI TPL with specific
l+l I V I .
Ad]acent vuld§ Patch release’f i ul. version
ver5|on ver5|on I @
|
________ 1%
Initial Patch Method| ~Patch Val. AP s A1 Non-Vul. APIs
Commit (via callgraph) : V
Patch@ (" Vul. Root ™y~ Vul. Root i bror
Method ™ 3¢ Method £ Method i
- - 1

Fig. 1. Illustration for terms used in the paper.

Vulnerable Libraries and the Associated Risks. Vulnerable
libraries are TPLs that contain vulnerabilities. Using vulnerable
libraries introduces potential security risks to the projects. For
instance, the Log4Shell vulnerability [29] existed in Apache
log4j, which is a widely used Java-based logging library, af-
fecting numerous projects.

Software Composition Analysis. Software Composition Anal-
ysis (SCA) [30] involves analyzing the libraries and identify-
ing their vulnerabilities. Vulnerable library identification is a
subset of SCA, which typically relies on hash comparisons or
configuration files (e.g., pom.xml) to identify TPLs, and detect
vulnerable libraries based on vulnerability databases (e.g., NVD
[31]). Vulnerability reachability analysis focuses on determin-
ing whether there is a path from the software to the vulnerable
code in TPLs. This analysis often uses forward call analysis to
ascertain whether the software can access the vulnerable code
within the libraries.

B. Key Term Definition

We introduce some key concepts or terms used in the paper
to make it easy to understand, as illustrated in Fig. 1.
Adjacent Vul. version vs. Patch release version. When an
open-source TPL is affected by a vulnerability (also known as
CVE), the vulnerability knowledge base usually gives the vul-
nerable version range of the TPL. “Patch release version” means
that it is the first release version to fix this vulnerability, i.e.,
Vit1. “Adjacent vulnerable version” is the vulnerable version
adjacent to the patch release version, i.e., V;. Patch commits
used by developers to fix this vulnerability exist between these
two versions.

Initial Patch Method. Initial patch methods are the methods
that have undergone code changes (i.e., added, deleted, or mod-
ified) in the patch commits.

Patch Method. Patch methods are methods that may be rel-
evant to addressing vulnerabilities. Since not all initial patch
methods play a role in patching, it is necessary to sift out
patch-unrelated methods (Section III-A2) from the initial patch
methods to generate precise patch methods. If a patch method
is present only in the patch release version (i.e., V1) and not
in the adjacent vulnerable version (i.e., V;), we consider it as
an added patch method.

Vul. Root Method. Vulnerable root methods are those methods
that are directly related to the vulnerability. Most of them are
extracted from patch commits of vulnerabilities directly.

Vul. APIs. Vulnerable APIs are the methods that are directly or
indirectly threatened by the vulnerability in the vulnerable TPL,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

including the vulnerable root methods and the methods that
directly/indirectly invoke vulnerable root methods. For projects,
APIs in TPLs are divided into 2 categories: vulnerable APIs and
non-vulnerable APIs.

C. Problem Definition

As shown in Fig. 1, our goal is to identify all vulnerable APIs
for each vulnerable TPL version based on patch commits of
CVE:s and vulnerable root method identification and construct
a database that maintains the mapping relation: vulnerable li-
brary versions<»CVEs<«>vulnerable APIs (libV-CVE-Vul. API),
based on which we aim to detect whether the project invokes
vulnerable APIs of TPLs, to assess the real impact of OSS
vulnerabilities on projects.

III. APPROACH

In this paper, we propose VAScanner to detect whether
the projects are threatened by the vulnerable APIs in TPLs.
Fig. 2 shows the overview of our approach, consisting of 4
components: (1) Patch method extraction, which collects initial
patch methods from patch commits and sifts out patch-unrelated
methods to extract accurate patch methods. (2) Vulnerable root
method identification, which identifies vulnerable root methods
through locating the patch methods at the version level and
employing an augmentation mechanism based on the extracted
patch methods. (3) Vulnerable API identification, which utilizes
call-graph analysis to identify vulnerable APIs for each library
version, and constructs a database storing the mapping relations
of vulnerable library versions (LibV), CVEs, and vulnerable
APIs (Vul.API), presented as libV-CVE-Vul. API. (4) Used vul-
nerable API detection, which detects the vulnerable APIs in the
libraries used by a given project.

A. Patch Method Extraction

This section describes the steps to extract the accurate patch
methods. Specifically, we first collect methods that have un-
dergone code changes in the patch commits (i.e., initial patch
methods), and then sift out patch-unrelated methods.

1) Initial Patch Method Collection: To collect the methods
related to patching vulnerabilities, we first need to obtain patch
commits of each CVE. Specifically, we collected vulnerabilities
(identified by CVE ID) and their associated patch commits
from Snyk Vulnerability DataBase [32] and GitHub Advisory
Database [33]. We chose them as the vulnerability data col-
lection sources for two reasons: (1) They maintain detailed
information about CVEs and the corresponding patches, such
as CVE ID, the vulnerable version ranges of TPLs, and patch-
related links, which cover the CVE-related references provided
by NVD. Besides, for most fixed CVEs, the two databases pro-
vide patch commit references on GitHub [34], which facilitates
the collection and analysis of patch commits. (2) They map
CVEs to vulnerable libraries, allowing us to identify libraries
with vulnerable versions based on CVE IDs. Based on the
two databases, we collected 2,640 CVEs and 1,551 affected
libraries belonging to the Maven ecosystem. We filtered out

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

2909

Patch method Vul. root method

Patch commit

'1 collection extraction identification
T q Initial patch Version-level patch
method collection |[™]

method localization

Augmentation

Patch-unrelated
method sifting

GitHub snyk

Fig. 2. Overview of VAScanner.

CVEs without patch commits in patch-related links and those
where the affected libraries did not have patch release versions.
Finally, we gathered 1,116 CVEs and 957 affected libraries to
collect initial patch methods.

For each patch commit, we extracted code differences by
using the abstract syntax tree (AST), as it can accurately iden-
tify real code changes and filter out irrelevant modifications
like adding or deleting identical code, changing the position of
methods, or adding blank lines. This approach is more effec-
tive and accurate than traditional code-based change extraction.
Specifically, we employed GumTree [35], a tool for generating
code differences in AST, to obtain valid changed methods in
patch commits. We first obtained the Java source code files
before and after the commits based on the GitHub repository
and used GumTree to generate the mappings between two
ASTs. The identified code changes are divided into three types,
i.e., insert, delete, and update. According to the tree structure
representing methods in the AST, we got the signature of meth-
ods where different nodes were located. Finally, we obtained
methods with valid code changes in the patch commits (i.e.,
initial patch methods) with different change types (inserted,
deleted, and modified). After filtering out CVEs whose patch
commits involve languages other than Java (e.g., JavaScript),
we consequently obtained the initial patch methods for 1,075
CVEs, 453 unique affected libraries and 1,350 patch commits.

2) Patch-Unrelated Method Sifting: Since not all initial
patch methods are related to vulnerability fixing, we aim to
sift out patch-unrelated methods from initial patch methods, to
obtain patch methods. To achieve this, we initially extracted the
changed (i.e., inserted, deleted, or updated) statements within
each initial patch method. We then assessed whether these
changed statements were unrelated to the patch. If all the
changed statements within an initial patch method are patch-
unrelated, the method will be sifted out, otherwise, it is recog-
nized as a patch method.

To achieve precise sifting of patch-unrelated methods, we
adopted a conservative strategy for identifying irrelevant state-
ments. Specifically, we summarized three patterns of patch-
unrelated statements: (1) Debugging code statements, such
as System.out.println(..), log-related function calls
(e.g., log.warn (. .)), and error handling statements which
only changed the exception messages, i.e., throws new
xxException(..); (2) AST-equivalent statements af-
ter name normalization. In detail, we initially collected the
functions, class member variables, and formal parameters of
functions that were solely renamed to generate a renaming

Vul. API %‘iﬁr Proj. with used libraries
identification
| {LibV-CVE-VuLAPI}[—» Used Vul. API
Backward call- Darabase detection
graph analysis Vul. libs and
used Vul. APIs

set. We defined various renaming scenarios: when the func-
tion name changed but the function body remained unchanged,
when a member variable merely altered its name but retained
the same type and initialization, or when a formal parameter
of a function only modified its name while maintaining the
same type. In such instances, we categorized these functions,
member variables, and formal parameters as being renamed.
If a statement only includes modifications to the names of
called functions, parameters of called functions, or the object of
calling functions, we check whether the modified name exists
in the renaming set. If it does, this statement is considered an
AST-equivalent statement before and after the patch commit.
Besides, if only the name of the assigned variable has been
modified in an assignment statement (e.g., A a = foo()),
the statement will also be regarded as AST-equivalent; (3)
Statements that solely compose the Getter/Setter functions,
suchas this.X = x,return X, return thisandre-
turn this.X (Xisaclass member variable). Note that we do
not assert that the Getter/Setter functions are inherently patch-
unrelated. Instead, our goal is to identify and sift out Getter/Set-
ter functions that solely consist of those specific statements.

B. Vulnerable Root Method Identification

The patch methods are extracted based on patch commits,
however, the patch release version or the adjacent vulnerable
version of libraries (shown in Fig. 1) may not contain the
methods that were patched. Therefore, in this section, we aim
to identify vulnerable root methods (denoted by Vul Root) by
locating the patch methods at the version level instead of the
commit level and augmenting them to obtain comprehensive
vulnerable root methods.

1) Version-Level Patch Method Localization: Since a com-
mit only records a timestamped change to the current code in the
repository, the changed methods in a single patch commit may
not appear in the release versions of the library. For example, a
library has several release versions V1, Vs, V3, Vy..., V,,, where n
is the number of versions, V5 and V3 are the vulnerable versions.
There may be multiple commits between V3 and V aiming to
patch the vulnerability in V3, however, the changed methods in
one commit might not be maintained in Vy or exist in V3, and
should not be identified as a valid patch. Therefore, we need
to locate the patch methods at the version level to ensure they
exist in the release versions.

Specifically, We gathered all library versions from the Maven
repository [28] and extracted patch releases and adjacent

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2910

Patch release version

A patch commit

(not exist in patch commit,; (a patch method only i
but may be vulnerable) | exist in patch version) ;

Adjacent Vul. version

call

(Call the added patch
method)

Fig. 3. Motivation for augmentation.

vulnerable versions based on vulnerable version ranges. If the
patch release version or adjacent vulnerable version is not
available in the repository, we filtered it out together with the
associated CVEs from our database. Then we extracted the
diff methods from pairwise class files between the adjacent
vulnerable version and the patch release version and checked
whether the methods that were patched exist in these diff
methods. To obtain more accurate vulnerable root methods,
we employ the following strategies to discard or retain patch
methods for further augmentation: (1) Patch methods that exist
in neither version (i.e., the patch release version and the adjacent
vulnerable version) will be discarded; (2) Patch methods that
exist in both versions are directly considered as vulnerable root
methods. (3) Patch methods that only exist in the patch release
version are newly added patch methods for the adjacent vulner-
able version and will be retained for augmentation. During the
process of patch method localization in library release versions,
we observed the absence of all patch methods for some CVEs,
thus, we excluded these CVEs and obtained 362 libraries with
14,775 versions involved in 502 CVEs.

2) Augmentation Mechanism: It is common to add a new
class or method during vulnerability fixing. Then, the added
patch methods are typically called by others, aiming to fix the
vulnerability in those methods. Existing work (e.g., Eclipse
Steady [6], [25], [26]) has overlooked the impact of added
patch methods when identifying vulnerable root methods. They
argued that these added patch methods are secure and can be
ignored. However, our observation reveals that ignoring added
patch methods can lead to overlooking vulnerable methods that
invoked added patch methods but were absent in patch commits.
For example, in Fig. 3, if the patch method 72,45, only exists
in the patch release version but not in the adjacent vulnerable
version, we regarded it as an added patch method. If a method
m invoked the added patch method 72,4, in the patch release
version but did not invoke this patch in the adjacent vulnerable
version, the method m from the adjacent vulnerable version is
still considered vulnerable, even if it did not appear in the patch
commit. Therefore, such methods should also be augmented as
vulnerable root methods.

Considering the situation that methods that invoked the added
patch method in the patch release version may be due to the
introduction of new functionalities rather than fixing the vulner-
ability; therefore, our augmentation mechanism is based on the
following constraint: A method is considered a VulRoot due
to augmentation only if the method invoked the added patch
method in the patch release version but not in the adjacent
vulnerable version. In other words, there are no other changes
in the augmented VulRoot except for the call relationship to
the added patch methods.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

Listing 1: Patch Commit of CVE-2011-2730 [36]

1| boolean isJspExpressionActive (PageContext p) {

2 e

3 if (sc.getMajorVersion() >= 3) {

4| - if (sc.MajorVersion() > 2 || sc.MinorVersion() > 3) {
5| - /* Application declares Servlet 2.4+:JSP 2.0 active.
6| - * Skip our own expression support.*/

7| - return false;

8| + if (sc.MajorVersion() == 2 && sc.MinorVersion() < 4) {
9| + /* Application declares Servlet 2.3-:JSP 2.0 not active.
10| + * Activate our own expression support.*/

11] + return true;

121 }}

13| - return true;

14| + return false;

15

Listing 2: Method Diff between 3.0.5 and 3.0.6 in org.springframework:
spring-web

1| Object evaluate(Parameters) throws JspException {
2 return isExpressionLanguage (attrValue)

3|+ && isJspExpressionActive (pageContext)

4 ? doEvaluate(): attrValue;

50}

For a real case, the TPL “org.springframework:spring-web”
is affected by the CVE-2011-2730 [37], causing multiple ver-
sions (the versions before 2.5.6.SEC03, and 3.0.0~3.0.6) to be
vulnerable. CVE-2011-2730 is caused by evaluating Expres-
sion Language (EL) expressions in tags twice, which allows
remote attackers to obtain sensitive information. As shown in
Listing 1, the developers only activate their expression support
when the application declares Servlet 2.3- (Lines 8-11) and
set “springJspExpressionSupport” to false by default (Line 14),
avoiding the potential double EL evaluation problem on pre-
Servlet-3.0 containers, which indicates that this method acts as
a bug fix. Although this patch method is shown as modified
in the patch commit, however, we found that it only existed in
patch versions (2.5.6.SEC03 and 3.0.6). Therefore, the method
“isJspExpressionActive ()” is an added patch method
for vulnerable versions.

To further confirm the impact of the added patch method
on fixing the vulnerability, we checked its call relationships in
the patch release version (V3.0.6). We found that five methods
directly called this added method and all of them existed in the
adjacent vulnerable version (V3.0.5). For example, in Listing 2,
the method “evaluate ()” called the added patch method
“isJspExpressionActive ()” (Line 3) in V3.0.6 to fix
CVE-2011-2730, and it still existed in V3.0.5 without invoking
the added patch method. Therefore, this method located in
V3.0.5 is vulnerable and should be augmented to the list of vul-
nerable root methods. Unfortunately, all of the patch commits
did not record such call relationship, thus existing work only
based on patch commits cannot identify the in-depth vulnera-
ble root methods, while VAScanner augments the vulnerable
root methods with such vulnerable methods via multi-version
analysis.

Algorithm 1 details the augmentation procedure. Given an
added patch method my, the call graph of the adjacent vulnera-
ble version and patch release version (V.4 and P4 respectively),
VAScanner outputs the augmented vulnerable root methods R

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

Algorithm 1: Vulnerable Root Method Augmentation

Input: mg: an added patch method. Pey: the call graph of patch
release version, Veq: the call graph of the adjacent
vulnerable version.

Output: R: Vulnerable root methods based on mg.

1 Visit < @

2 Q <+ Queue()

3 Q.push(mg)

4 Visit < Visit U {mo}
5 while Q # @ do

6 m < Q.pop()

7 Sm < getCaller(m, P.q) // Get direct callers of m.
8 if S,, = @ then

9 | continue

10 foreach c € S,,, do

1 if isInGraph(c, Veq) then

12 L R+ RU{c} /l Incorporate it into the results.
13 else

14 if ¢ ¢ Visit then

15 Q.push(c)

16 Visit < Visit U {c}

17 if R # @ then

18 | return R

based on my. In detail, we leverage the function call relationship
of the added patch methods in the patch release version, to
mine the methods in the call chain that exist in the adjacent
vulnerable version (Lines 5-18). In particular, for each added
patch method my, if it is invoked by other methods in the patch
release version, we will check whether these callers exist in the
adjacent vulnerable version (Line 11). If exists, the caller will be
augmented into the set of vulnerable root methods (Line 12),
otherwise, it will be added into the queue for further mining
vulnerable root methods (Lines 13-15). Note that, once we
obtain the results of vulnerable root methods, we will exit the
while loop directly (Lines 17-18), to avoid increasing the neg-
ative impact of the possible errors of the added patch methods.
After the above process, the set of augmented vulnerable root
methods is constructed.

C. Vulnerable API Identification

Based on the final vulnerable root methods identified in
Section III-B, in this section, we aim to mine the vulnerable
APIs via call graph, which is defined in Section II-B. We mine
all the vulnerable APIs because if a project invokes an API
of a library that eventually reaches or calls the vulnerable root
method, then this API should also be regarded as vulnerable. In
fact, according to our observation, the vulnerable root methods
are hardly invoked by projects directly. Therefore, we also mine
and maintain all the vulnerable APIs for each vulnerable library
version for further analysis.

Specifically, for each vulnerable library, we mined for the
vulnerable APIs affected by the vulnerable root methods based
on backward call graph analysis. Firstly, we generated the call
graph of the library by employing context-insensitive points-
to analysis provided by the static framework Tai-e [38] and
considered all the methods as the entry points to obtain a

TABLE I

2911

STATISTICS OF VULNERABLE APIS IN LIBRARIES IDENTIFIED BY
VAScanner. (LIBV.: LIBRARY VERSIONS)

j #Total #vul. API #Vul. Boot Method
(Excl. Root) #Commit #Augm.
AP |_once 90,749 87,417 3,732 249
mult. 2,410,779 2,348,684 58,736 3,359
Lib (LibV.) 362 (14,775) | 304 (11,619) | 358 (14,620) | 42 (1,365)
CVE 502 405 493 49

Note: excl. root - Vulnerable APIs that exclude vulnerable root methods;
once - The same vulnerable API is counted once across versions; mult. -
The same vulnerable API is counted multiple times across versions.

complete call graph. Subsequently, starting from the vulnerable
root methods, we traversed their called traces in the call graph
and recorded all the methods executed in the traces. In such a
manner, we obtained all the vulnerable APIs for each vulnerable
library version.

Database construction. Based on the identified vulnerable
APIs, we constructed a vulnerable API database with the map-
ping relation: library version to CVEs to vulnerable APIs, de-
noted by libV-CVE-Vul.API. Specifically, we crawled all the
vulnerability data and patch commits corresponding to the vul-
nerability from Snyk Vulnerability DB and GitHub Advisory
(as of Feb. 2023) and downloaded the vulnerable libraries from
Maven [28] to support our database. Since some versions are
not available from Maven or some patch class files do not exist
in the libraries, we filtered them out. We employ the approach
above for each CVE in the vulnerable library, to obtain a set
of vulnerable APIs and construct the vulnerable API database.
Table I provides detailed information about the database. The
column “#Vul. API (excl. root)” represents the number of
vulnerable APIs obtained from the backward analysis of call
graphs. “#Vul. root method” represents the number of vulnera-
ble root methods, including ones directly obtained from patch
commits (“#Commit”) and the augmented ones (“#Augm.”)
mined by VAScanner. We used two counting methods for
vulnerable APIs across different library versions: single count-
ing (‘API-once’) and multiple counting (‘API-multi.”). Identical
APIs were determined by normalizing their function bodies and
comparing hash values. The database contains 90,749 unique
vulnerable APIs (2,410,779 across library versions) from 362
unique libraries with 14,775 library versions, involved in 502
CVEs. On average, our augmentation mechanism has supple-
mented 5.9 augmented vulnerable root methods per library and
2.5 per library version, related to 49 CVEs. The database is
generated by continuous iteration, i.e., if the library is not found
in our database during the detection process, we will search
for relevant vulnerability information based on the name of the
library to continuously extend the database.

D. Used Vulnerable API Detection

In this section, we describe how to detect whether the vul-
nerable APIs from TPLs are used in projects. For a given Java
project with its used libraries, we generate its call graph by
employing the context-insensitive points-to analysis of Tai-e

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2912

[38], which is the bedrock to determine whether it invokes vul-
nerable APIs. If it depends on a library version in the vulnerable
API database, we search out the used vulnerable APIs from
the database for this library. Specifically, for each method in
the call graph of the project, we analyze whether it invokes
the vulnerable APIs in the library, if true, VAScanner marks
the vulnerable APIs used by developers. Besides, it also reports
the vulnerable dependency, the used vulnerable APIs in the
library, the call frequency of vulnerable APIs, and the involved
CVEs. Suppose all the methods in the project do not call the
vulnerable APIs, in that case, the project uses the vulnerable
library without using the vulnerable code, which should not be
regarded as vulnerable usage.

IV. EVALUATION

In this section, we evaluated VAScanner on real-world
projects to answer the following research questions:
RQ1: Can VAScanner effectively identify vulnerable root
methods and vulnerable APIs?
RQ2: Can VAScanner outperform state-of-the-art tools in de-
tecting vulnerable projects threatened by vulnerable third-party
libraries?
RQ3: How do the sifting and augmentation mechanisms con-
tribute to vulnerable API detection for VAScanner?
RQ4: How is the status quo of vulnerable libraries used in open-
source projects?

A. RQI: Effectiveness Evaluation

1) Setup: Given that vulnerable APIs are derived from the
backward call graph analysis, it can be reasonably assumed that
APIs directly or indirectly calling the vulnerable root methods
may also contain vulnerabilities. As a result, the accuracy of
vulnerable APIs depends on the accuracy of vulnerable root
methods. This experiment aims to investigate the effectiveness
of VAScanner in identifying vulnerable root methods and
vulnerable APIs, and take an in-depth analysis of root causes.
Specifically, this experiment is based on our database contain-
ing 362 vulnerable TPLs (14,775 library versions), involving
502 CVEs. Due to the lack of ground truth for vulnerable
root methods correlated with CVEs, we manually analyze the
sifted patch-unrelated methods and augmented vulnerable root
methods to assess the effectiveness of sifting and augmen-
tation mechanisms. Furthermore, we additionally provide the
ground truth for vulnerable APIs to validate the vulnerable
API database and also perform an error analysis to estimate
the effectiveness of the vulnerable API database provided by
VAScanner.

2) Result: Table T shows that VAScanner can identify
90,749 unique vulnerable APIs (2,410,779 with library ver-
sions). Details are aforementioned in the dataset construction
of Section III-C. In the following, we aim to demonstrate the
validity of the augmented vulnerable root methods, the sifted
patch-unrelated methods and vulnerable APIs.

(1) Result of augmented vulnerable root methods. Table II
shows the number of libraries (library versions) and CVEs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

TABLE 11
LIBRARIES, CVES AFFECTED BY UNIQUE ADDED VULNERABLE
ROOT METHODS AND PROJECTS INVOKING THESE LIBRARIES

#Augmented Vulnerable Root Methods
) 0 1~5 5~10 | 10~20 | >=20
CVE 453 36 6 6 1
Lib (LibV.) | 339 (13,925) | 32 (1,566) | 7(6) | 5(30) | 1(0)

Listing 3: Patch patterns with examples

// Pattern 1: Checker

+ boolean checkPathSecurity(String path){
+ contain_ = path.contains("../");

+ end = path.endsWith(".log")

+ if (1StringUtils.isBlank(path)) {

+ if (start && !contain && end) {
+ return true; }}

+ return false; }

// Pattern 2: Filter

10| + String filterSensitive(String url){

11| + String resultUrl = url;

O 0NN AW —

12| + if (containsIgnoreCase(url, _SENSITIVE)) {
13] + resultUrl = replaceIgnoreCase(url, SENSITIVE, FALSE);}
14| + return resultUrl; }

15| // Pattern 3: Configuration
16| + boolean isSupportActive (PageContext pc) {

17| + ServletContext sc = pc.getServletContext();

18 String EXP_SUPPORT_ CONTXT = "springJspExpressionSupport"
19 String Support = sc.getInitParam(EXP_SUPPORT CONTXT) ;

20 if (Support != null) {

return Boolean.valueOf (Support) ;}

if (sc.getVersion() >= 3) {
Int maj_v = sc.getEffectiveMajorVersion()
Int min v = sc.getEffectiveMinorVersion()
if (maj_v==2 && min_v<4) {

return true;}}

return false;}

28| // Pattern 4: Enhancer

29| + String randomString(int byteLength) {

30| + byte[] bytes = new byte[byteLength];

31| + SECURE_RANDOM.nextBytes (bytes) ;

32| + CharSet sc = StandardCharsets.ISO 8859 1;

33| + return new String(bytes, sc);}

34| // Pattern 5: Assistance

35| + ObjectMapper createVaadinConnectObjectMapper (

36| + ApplicationContext c) {

ObjectMapper objMapper =
Jackson20bjectMapperBuilder.json() .build() ;

JacksonProperties jacksonProperties =
c.getBean (JacksonProperties.class) ;

if (jacksonProperties.getVisibility () .isEmpty()) {
objMapper.setVisibility (PropertyAccessor.ALL,
JsonAutoDetect.Visibility.ANY);}

return objtMapper;}

.
.
.
.
.
23] +
-
.
.
.

+ o+ o+ o+ o+

affected by augmented vulnerable root methods. Columns 3-6
indicate that more vulnerable root methods are mined compared
with those only extracted from patch commits. Since there is
no single library version with more than 20 unique vulnerable
root methods augmented, the value of “libV.” is set to 0. We
manually analyzed each method and summarized five patch
patterns (3). These patterns highlight the scenarios in which
developers address the vulnerabilities by introducing new patch
methods.

P;: Checker. To fix vulnerabilities reported in CVEs, devel-
opers sometimes add check mechanisms (e.g., add logic state-
ments) to check the legitimacy of the input or improve the
original check mechanism. For example, Listing 3 shows an
added method “checkPathSecurity (. .)” in CVE-2022-
26884 [39] that checks whether the parameter “path” trans-
ferred conforms to security, e.g., whether it contains “../”” which
does not meet security requirements and may lead to security
problems.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

4000
3500 = CVE mMethod

®CVE mMethod

B
S
ry

100 3000

2500

%
2
Number

2000
60 61 55
1500 1,352

1000

0 17 00 502

o Lol i

0 | ol | 0

Checker Filter Config. Enhancer Assist. sifted methods patch methods
Augmentation types Directly from commit

(a) Augmentation mechanism (b) Sifting mechanism

Fig. 4. Unique augmented methods, sifted patch-unrelated methods and
corresponding CVEs.

P5: Filter. Some added methods aim to filter out unexpected
input with specific conditions. In such a pattern, legitimate input
will be retained, and illegitimate ones will be discarded. For
example, in Listing 3, to fix CVE-2022-40955 [40], developers
added a new method “filterSensitive (. .)” in the patch
commit [41] to filter out invalid and sensitive cases and keep
the url meeting security requirements.

P3: Configuration. To avoid the vulnerabilities caused by the
lack of default configuration or misuse of configuration, devel-
opers tend to standardize or improve existing configurations.
As described in CVE-2011-2730, the spring-framework [42]
suffered from Expression Language Injection. Developers ad-
dressed the potential Double EL Evaluation issue by defaulting
the relevant parameter ‘springJspExpressionSupport’ to false in
their patch commit [36].

P,: Enhancer. Developers usually introduce a series of al-
gorithms and operations to enhance existing programs for se-
curity, such as introducing more robust algorithms and safer
authentications. Listing 3 shows an added method “random
String ()” identified in the patch commit [43], which pro-
vides a randomly generated default value, enhancing the client-
side session encryption secret after the update.

P5: Assistance. Some added methods may not directly fix
vulnerabilities, but their relevance can be assessed through cor-
relation analysis of commit messages and methods. For exam-
ple, the added method “createVaadinConnectObject
Mapper (..)” in the patch commit [44], shown in Pattern 5
of Listing 3, creates a custom ObjectMapper to help address the
vulnerability.

For the 5 types of added patch patterns, we further inves-
tigated the number of vulnerable root methods that are aug-
mented due to each type as well as the CVEs involved. Fig. 4(a)
shows the result. Among the 49 CVEs supplemented with vul-
nerable root methods, 13 CVEs and 17 CVEs are fixed by
adding a Checker and Enhancer in patch commits, respec-
tively, which shows that they are the common fix solutions.
Moreover, we augment 249 unique methods into vulnerable root
methods in total, and 115 methods (the most) are augmented by
Enhancer. As for the analysis of augmented vulnerable root
methods in patch commits, our validation strategy unfolds in
two steps: first, we validate whether the added patch method

2913

associated with augmented root methods achieves the patching
effect; second, we check whether the augmented root method
was defective before invoking the added patch method. If the
added patch method is patch-unrelated, or if the augmented root
method was secure in the adjacent vulnerable version of the
library, we determine that this augmented root method was an
FP. We validate the above steps for 49 CVEs affected by the
augmentation mechanism. Out of the 249 augmented vulnerable
root methods, 16 functions (involving 6 CVEs) were confirmed
as FPs, achieving 93.57% precision.

(2) Result of sifted patch-unrelated methods. Fig. 4(b) dis-
plays the number of involved CVEs and sifted patch-unrelated
methods, including 1,352 sifted methods associated with 179
CVE:s. Since the sifting mechanism involves a large number
of methods, we conducted manual analysis on 50 randomly
selected CVEs to evaluate the effectiveness (i.e., precision and
recall) of the sifting mechanism. The sample set consisted of
807 initial patch methods, after manual analysis, 298 meth-
ods were identified as patch-unrelated and served as ground
truth. Note that since we are evaluating the effectiveness of the
patch-unrelated sifting mechanism, we consider correctly sift-
ing out patch-unrelated methods as a true positive. Therefore,
incorrectly sifting out the patch-related method is considered a
false positive, and incorrectly identifying and retaining a patch-
unrelated method is considered a false negative.

Overall, our sifting mechanism identifies 258 methods patch-
unrelated, achieving an impressive precision of 98.06%, with
only 5 methods mistakenly considered as invalid patches. The
reason is that developers move code snippets from one place
to another (e.g., into an if clause), which changes the code
semantics and causes false positives of VAScanner. As for
the false negatives, 45 patch-unrelated methods were not rec-
ognized successfully, resulting in a recall rate of 84.90%. The
reasons are as follows: (1) Certain methods have under-
gone intricate modifications, limiting the sifting mechanism.
(2) Method changes before and after patch commits are seman-
tically equivalent. As VAScanner employs ASTs to extract the
changed code, it cannot recognize semantic equivalence. For
example, in the patch commit [45], the function “protocol
VIOLATION(CHANNELHANDLERCONTEXT, STRING)” was split
into two functions, with one calling the other. However, VAS-
canner fails to recognize it as patch-unrelated, leading to a false
negative.

Furthermore, we employed Wilson’s score confidence inter-
val [46] to calculate the real false positive rate (FPR) and false
negative rate (FNR) of the sifting mechanism, which requires
solving for p in the following formula:

p-(1=p)/n €]

where p is the real FPR or FNR, representing the probability of
FPs or FNs in the overall population; p is the estimated FPR or
FNR, representing the proportion of FPs or FNs calculated from
the sample n; and z = 1.96 is the critical coefficient for a 95%
confidence interval. Thus, the FPR of the sifting mechanism is
0.98% with a 95% confidence interval (CI) of [0.42%, 2.28%],
and the FNR is 15.10% with a 95% CI of [11.48%, 19.61%].

lp—pl=2-

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2914

Algorithm 2: Construction of Ground Truth for
Vulnerable APIs

Input: Agp: vulnerable API database, Rsqm: sampled vulnerable
root methods, Rerr: the false positives of vulnerable root
methods in Rsgm.

Output: Agqp,: sampled vulnerable APIs, A¢,: the false positives

of vulnerable APIs in Asgm.
1 Asam <0
2 Aerr <0
3 foreach vul API € Ag, do
/I Get associated vul. root methods of vulAPI.

4 vul Roots < getSourceRoots(vul APT)
5 if Rsam NovulRoots == & then
6 | continue

7 Asam Asam U {’UUIAPI}
8 isErrAPIFlag < True

9 foreach vulRoot € vulRoots do

10 if vulRoot ¢ Rerr then

11 isErrAPIFlag < False
12 break

13 if isErr APIFlag then
14 L Aerr — Ae'rr @] {’UUIAPI}

15 return Asam, Aerr

(3) Result of vulnerable APIs. In light of the need to validate
the experiments’ results, including the effectiveness of vulnera-
ble APIs (RQ1), the comparison experiment (RQ2), the ablation
study (RQ3), and the large-scale analysis (RQ4), we have estab-
lished a common ground truth for evaluating these experiments.
Specifically, given the large number of CVEs associated with
the vulnerable APIs in RQI1, the overlapping APIs detected
in RQ3, and the detection results in RQ4, it is impractical to
analyze each vulnerable API individually. Therefore, we chose
to conduct a sampling analysis on them and selected CVEs
relevant to the detection results of RQ2 and the non-overlapping
vulnerable APIs detected in RQ3. Finally, the ground truth’s
data sources were from 58 CVEs. These 58 CVEs involved
26,720 unique vulnerable APIs, which were directly or tran-
sitively reached from 270 unique vulnerable root methods.
The vulnerable APIs are generated based on vulnerable root
methods and function call relationships. Since we have utilized
the advanced tool for generating call graphs as the founda-
tion of our research, and validating the accuracy of these call
graphs is beyond the scope of our research, we assume that
the function call relationships are accurate and determine the
validity of vulnerable APIs based on the validity of vulnerable
root methods. Our validation strategy for these large number
of vulnerable APIs in the ground truth is as follows: (1) we
first manually analyze vulnerable root methods based on patch
commits and vulnerability descriptions, following the method
described in references [47], [48], to obtain the labels of the
270 vulnerable root methods. (2) As shown in Algorithm 2, we
automatically extract the associated vulnerable root methods for
each vulnerable API. If all of these vulnerable root methods
are not vulnerable, we consider that vulnerable API to be a
false positive. This process results in obtaining the labels for
the 26,720 unique vulnerable APIs as ground truth. Ultimately,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

we identified 386 of 26,720 unique vulnerable APIs (including
25 of 270 unique vulnerable root methods) as false positives,
and the vulnerable API database has a false positive proportion
of 1.45% with a 95% CI of [1.31%, 1.59%].

Answer to RQ1: VAScanner can effectively augment Vul-
nerable Root Methods which are absent in patch commits
with 93.57% precision and sift out patch-unrelated methods
with 98.06% precision. Eventually, we construct a database
consisting of 90,749 vulnerable APIs (2.4M with library
versions) with 1.45% false positive proportion with a 95%
CI of [1.31%, 1.59%] from 362 TPLs.

B. RQ2: Comparison With Existing Work

In this section, we demonstrate the effectiveness of VAS-
canner by comparing it with the state-of-the-art tool, Eclipse
Steady [6], [25], [26], which is the only open source tool
providing a forward reachability analysis at the method level
so far.

1) Dataset Collection: We collected Java projects from
GitHub with different numbers of stars. In total, we crawled
13,708 real-world projects with stars ranging from 70,000 to
0, among which 6,416 can be successfully compiled (using
“mvn compile”), while others failed to be compiled due to the
use of private libraries or some unpassed plugins. We further
filtered projects that did not depend on the vulnerable library
versions in our database, and eventually obtained 3,147 real-
world potentially vulnerable projects.

Steady manages its vulnerability data within Project KB,
which includes CVE-related information, including vulnera-
bility descriptions, affected libraries, affected library versions,
patch library versions, patch links, and more. To ensure a
fair comparison with Steady, we selected the CVEs that are
both maintained by Steady and VAScanner as the comparison
dataset, i.e., 213 CVEs in total. We obtained the vulnerable
libraries versions affected by these CVEs on GitHub Advisory
Database [33], 171 libraries with 6,153 library versions in total,
and finally located 1,045 projects which depended on them.

2) Setup: Steady supports static analysis and dynamic-
based analysis to analyze the vulnerable code reachability,
while the dynamic-based methods require JUnit or application-
specific tests, which are often unavailable or insufficient in
public Maven projects. Therefore, we compare VAScanner
with Steady in terms of static analysis. Steady takes a project
as input and initially identifies TPLs directly or transitively
dependent on the project using Project KB [49], and employs
either Soot [50] or WALA [51] to facilitate static analysis.
To eliminate the side-effect caused by different static analysis
frameworks between VAScanner and Steady, we choose Soot
as the call graph construction framework of Steady and set up
the same configuration as we have done with using Soot. As for
recording the detection time for Steady and VAScanner, since
only the vulnerability reachability analysis part is focused on,
we exclude the time spent on identifying vulnerable libraries
and directly record the time spent on reachability analysis.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

TABLE III
COMPARISON WITH STEADY IN TERMS OF THE DETECTED CASES,
INVOLVED VULNERABLE PROJECTS, LIBRARIES, CVES,
AND THE TIME COST

- #Cases | #Projs | #Libs | #CVEs | Avg Time (s)
VAScanner 214 177 32 42 353
Steady 95 66 12 13 769
Overlapped 40 44 9 11 N.A.

We run Steady and VAScanner on the aforementioned 1,045
projects, and compare the effectiveness of detecting vulnerable
projects. One project identified as vulnerable means that there
exists at least one execution path from the project to the vul-
nerable API of the vulnerable library.

3) Result: Table III shows the comparison results between
VAScanner and Steady. The “Overlapped” row represents the
results identified by both VAScanner and Steady. Consider-
ing the overall performance, both VAScanner and Steady can
identify vulnerable projects in a finer-grained manner, sharply
reducing the vulnerable projects from 1,045 to 177 and 66 re-
spectively. Specifically, VAScanner identified more vulnerable
cases than Steady (214 vs. 95), with VAScanner averaging
353s per project for detection, and Steady averaged 769s. Be-
sides, 40 cases are both identified by two tools. To validate
the precision of identified cases scanned by VAScanner and
Steady, we used the ground truth for vulnerable APIs proposed
in RQI to check whether the vulnerable APIs used by projects
were false positives. If there is at least one vulnerable API
that is confirmed to be the true positive, the detected case is
considered a true positive. Moreover, if one tool identifies a
case as a true positive, while another tool does not detect this
case, then this case is considered a false negative for the latter.
Consequently, we identified 166 (61.71%) FNs in the scanning
results of Steady, while VAScanner yielded 8 (2.97%) FPs and
55 (20.45%) FNs. We thus further take an in-depth analysis to
investigate the reasons and insights, which are summarized as
follows.

o Identified by both tools (40 cases). For vulnerable projects
identified by both tools, these detected cases are all true pos-
itives. Furthermore, we found that these projects all directly
invoked vulnerable libraries, i.e., directly invoked the vulnera-
ble APIs or other APIs of the library which finally reached the
vulnerable root methods via call graph. Besides, the vulnerable
root methods of these used libraries were all extracted from
patch commits, and this is the simplest case that existing patch
commit analysis focused on. Therefore, Steady and VAScan-
ner both can identify them.

e Only identified by Steady (55 cases). For projects that were
only identified as vulnerable by Steady, some projects invoked
vulnerable libraries indirectly. Since Steady started analysis
from the project and further analyzed the direct- and transitive-
invoked libraries to detect whether the project became vulner-
able through the dependencies, it thus can identify such cases.
While VAScanner focused on distilling the vulnerable APIs
of each vulnerable library, i.e., only considering the vulnerable
libraries directly depend on projects, it cannot identify whether

2915

the project can reach vulnerable APIs/code from such transitive
dependency.

¢ Only identified by VAScanner (174 cases). For the projects
only identified by VAScanner, we found these projects invoked
vulnerable library APIs that are not marked as vulnerable by
Steady. There are four possible reasons: (1) Due to the missing
information of vulnerable libraries affected by the same CVE,
Steady exhibits false negatives in the identification of vulner-
able libraries, where such vulnerable libraries are mistakenly
classified as safe. For example, the library “dom4j-2.0.0” is
suffered by CVE-2020-10683 [52], but Steady fails to identify it
as a vulnerable TPL. (2) Steady identified vulnerabilities based
on all the modified and deleted methods in the patch commits.
However, if the patch commit added a patch method that is
not directly invoked in any other patch commits but is later
invoked by methods in the vulnerable library version in another
commit, Steady may not recognize it as vulnerable. In contrast,
VAScanner can mark it as vulnerable owing to its augmenta-
tion mechanism. For example, the project “jbufu/openid4java”
directly depends on the library “xercesImpl-2.8.1” which is
affected by CVE-2012-0881. VAScanner reported that it in-
voked the vulnerable API from “xercesImpl-2.8.1”, however,
Steady showed that it did not reach the vulnerable code re-
lated to CVE-2012-0881. After our investigation, we found it
indirectly invoked the vulnerable root method augmented by
VAScanner. Since Steady only extracts the diff methods from
patch commits as vulnerable methods, it cannot cope with such
a situation, resulting in false negatives. (3) When the libraries
contain both vulnerable structures and patch structures, Steady
is uncertain about whether they include vulnerable code, re-
sulting in missing some identified results. Steady stored the
AST associated with vulnerability to determine whether the
current library version contains vulnerable code. Due to some
internal errors, the version that is vulnerable is not recognized
by Steady. (4) The depth of call analysis in forward vulnerabil-
ity reachability analysis is shallow compared to backward call
graph analysis. Forward reachability analysis traces paths from
external code to the vulnerability point, emphasizing breadth,
while backward call graph analysis starts from the vulnerability
point and traces its calling paths outward, focusing more on
depth. Consequently, forward reachability analysis lacks the
comprehensiveness of backward analysis, as achieving the same
depth would require a significant resource investment.

As for 8 false positives generated by VAScanner, they in-
volved 4 CVEs and 4 libraries. The misidentification of these
cases stems from the fact that the root methods associated with
reported APIs are unrelated to the vulnerabilities. Since the
patch involves the addition of member variables with the result
of necessitating complex modifications in the initial methods,
VAScanner erroneously determined these root methods were
vulnerable before patching.

Answer to RQ2: VAScanner can enhance the current tool
chains by detecting security threats more effectively through
deep call chains at the price of potentially missing some
cases due to transitive dependencies.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2916

TABLE IV
ABLATION STUDY RESULTS ON DIFFERENT MECHANISMS (v": ENABLED;
X DISABLED; PROP.: PROPORTION)

Si?g;cgha“;':‘gsm. #Vul. APIs FP prop.(%) FN prop.(%)
X X 1,229 11.89% ~ 16.52% 2.16%
v X 1,158 6.11% ~ 10.74% 2.16%
v v 1,183 6.11% ~ 10.74% 0

C. RQ3: Ablation Study on Different Mechanisms

To showcase the contribution of the proposed sifting and
augmentation mechanisms, we set up an ablation study on them.
Specifically, we execute VAScanner and VAScanner- with
different mechanisms enabled on the same projects respectively,
shown in Table IV. The contribution of the augmentation mech-
anism is not separately studied because it is based on the sifting
mechanism. We then compare the results of the individual scans
against each other.

1) Dataset Collection: Our proposed sifting and augmen-
tation mechanisms affected 179 and 49 CVEs, respectively,
involving 183 libraries with 6,529 library versions. To evaluate
the impact of these two mechanisms, we selected 1,191 projects
that are dependent on the 183 libraries from the 3,147 potential
vulnerable projects mentioned in Section IV-B, which enables
us to assess the contribution of these mechanisms.

2) Result: After scanning these potentially vulnerable
projects, VAScanner identified 284 projects that utilized vul-
nerable APIs. However, VAScanner- without any mechanisms,
and with only the sifting mechanism, detected 293 and 272
projects calling vulnerable APIs, respectively. Table IV shows
the vulnerable API detection result of the ablation study. The
“#Vul. APIs” column displays the number of detected vulnera-
ble APIs. We assessed the accuracy of the detected APIs by
analyzing the precision of the corresponding vulnerable root
methods. VAScanner decreased 71 (5.78%) false positives by
employing the sifting mechanism, and 25 (2.16%) false nega-
tives by utilizing the augmentation mechanism. Besides, VAS-
canner and VAScanner- (both without any and augmentation
mechanism) identified 1,158 overlapping APIs, with an 8.13%
false positive proportion with a 95% CI of [6.11%, 10.74%].
Next, we first provide detailed explanations for how VAS-
canner achieves the reduction in FPs and FNs through these
two mechanisms, and subsequently validate the overlapping
detected APIs.

e FP reduction analysis. Since VAScanner- without any
mechanisms identified the diff methods before and after the
patch commits as patch methods directly, its vulnerable API
database may include many non-vulnerable APIs. However,
our proposed sifting mechanism can sift out patch-unrelated
methods with high precision, reducing the generation of some
non-vulnerable APIs for both VAScanner and VAScanner-
with the sifting mechanism. Therefore, the sifting mechanism
can eliminate 71 (5.78%) FPs detected by VAScanner-
without any mechanisms. For example, the project “gavincook/
githubOfflinelnstaller” depended on the TPL “dom4j-2.0.0-
RC1” influenced by CVE-2020-10683. VAScanner- without

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

TABLE V
OVERALL STATUS OF THE REAL-WORLD PROJECTS INVOKING
VULNERABLE LIBRARIES AND POTENTIALLY VULNERABLE APIS

Not Calling Calling Libs Calling Libs and Vul APIs

Vul Libs but not Vul APIs | T1ib [2 1ibs | 3 Iibs | 4+ libs
#Proj 1,753 717 596 69 11 1
#CVEs N.A. N.A. 73 47 22 6

any mechanisms shows that it invoked 3 vulnerable APIs which
indirectly called the root method “SAXReader : configure
READER(XMLREADER,DEFAULT HANDLER)”. However,
through meticulous manual verification, we found that it
was not vulnerable in the patch commit [53], causing FPs of
VAScanner- (without any mechanisms).

¢ FN reduction analysis. Table IV reveals that VAScanner de-
tected 25 additional vulnerable APIs compared to VAScanner-
without augmentation mechanism, indicating that augmentation
mechanism can eliminate 25 (2.16%) FNs. The augmentation
mechanism enables VAScanner to generate more accurate vul-
nerable APIs. For example, the project “fabric8io/shootout-
docker-maven” utilized the TPL “tomcat-embed-core-7.0.91”
affected by CVE-2021-30640. In the patch commit [54], de-
velopers introduced a patch method named “JNDIRealm:
DOATTRIBUTEVALUEESCAPING (STRING)” to implement the
necessary escaping. Through our augmentation mechanism,
two methods invoking this newly added patch method in the
patch release version (V7.0.109) were absent in any other patch
commits. This absence resulted in VAScanner- failing to iden-
tify vulnerable APIs related to these augmented vulnerable root
methods, leading to FNs in scanning projects.

e Validation for overlapping APIs. We used the ground truth
to validate the overlapped vulnerable APIs detected by both
tools. Among the 58 CVEs in ground truth, 36 were involved
in the ablation study, covering 541 vulnerable APIs out of
1,158 overlapping APIs. We found that 44 out of 541 APIs
from ground truth were false positives, and then performed
an error analysis using Wilson’s score confidence interval [46]
to estimate the false positive proportion. Thus, the detected
overlapping APIs have an 8.13% false positive proportion, with
a 95% CI ranging from 6.11% to 10.74%.

Answer to RQ3: VAScanner effectively reduces FPs
by 5.78% through sifting mechanism and FNs by 2.16%
through augmentation mechanism, leading to more accurate
and comprehensive vulnerable API detection.

D. RQ4: Large-Scale Analysis

Based on the 3,147 projects mentioned in Section IV-B, we
further conducted a large-scale study by leveraging VAScan-
ner, to reveal the fact of using potentially vulnerable APIs from
the vulnerable libraries in real-world projects.

1) Impact Analysis of Potentially Vulnerable APIs: Based
on the collected dataset, we aim to investigate the impact of
potentially vulnerable APIs on real-world projects. The results
are shown in Table V. We found that 1,753 projects did not use
any of the modules in the vulnerable libraries in our database,

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

2917

TABLE VI
ToOP 5 VULNERABLE LIBRARIES AND POTENTIALLY VULNERABLE APIS BEING INVOKED BY PROJECTS IN THE DATASET

ID Library and Version Frequency | Top Invoked Potentially Vulnerable APIs (Frequency)

1 com.alibaba:fastjson:1.2.47 a4 é: jggg Egiggilggé;n(;gbject) (165)

2 |oapatenpeomponnsigelion432| 3| osesi R EC ent neente eI T T

3 |orgapache hupeomponentsihupelieni:433 | 26|y 08 R e i Request | ResponseRandlex) (10)
4 com.alibaba:fastjson:1.2.62 23 é gzgnggL]Ti?sSEZ;Eil(igj()ec(g;)(&)

5 | org.apache.activemg:activemg-all:5.13.2 21 ; ClassPathXmlApplicationContext:<init> (String) (27)

. AbstractApplicationContext:getBean (String) (26)

717 projects only used the non-vulnerable modules in the vul-
nerable libraries, and 677 projects were potentially affected by
vulnerable libraries. Moreover, we used the ground truth for
vulnerable APIs proposed by RQI1, to validate the scanning
results for conducting a sampling analysis. These CVEs involve
35 libraries, 134 library versions, and 219 projects using vulner-
able modules. Among these 219 projects, TP=215 and FP=4.
Furthermore, we conducted an error analysis using Wilson’s
score confidence interval and found that approximately 21.51%
of all projects have utilized potentially vulnerable modules in
the vulnerable libraries. The false positive proportion is 1.83%
with a 95% CI of [0.71%, 4.61%]. This means that for most
projects, even if calling the vulnerable TPL, they are still not
affected by the vulnerable library. For example, the project
“elibom/jogger” directly relies on two vulnerable dependen-
cies: jetty-server-8.1.15 and httpclient-4.5.2, and it invoked 9
APIs from jetty-server-8.1.15, but none of these APIs were
deemed vulnerable. Thus, it can suspend the processing of these
three vulnerable libraries. Our analysis indicates that vulnerable
TPLs may not have a substantial impact on most projects.
We explore the reasons from the following points: (1) For the
vulnerability itself, the vast majority of vulnerabilities threaten
only one or specific modules of the software. We attempt to
maximize the impact range of vulnerabilities in the TPL through
backward call graph analysis, to ensure that all the modules
potentially affected by vulnerabilities are identified. (2) For the
project itself, only specific functional modules, rather than the
entire TPL are employed to enhance the development process.
Consequently, the project may not invoke potentially vulnerable
APIs in TPLs and would not be threatened by the vulnerability
in TPLs. When faced with developing large projects, the project
may directly or transitively rely on multiple vulnerable libraries.
At this time, it is necessary to identify whether the project has
applied the vulnerable modules of libraries, which can assist de-
velopers in effectively planning patch processes and prioritizing
the mitigation of vulnerable TPL impacts.

2) Top Vulnerable Libraries and Vulnerable APls: We
further investigate the most frequently vulnerable libraries
and potentially vulnerable APIs invoked by projects based on
the collected dataset. Table VI shows the result. The library
“com.alibaba:fastjson:1.2.47”, a JSON processor, tops with the
list with a maximum frequency of 170 invocations of vulnerable
APIs. This is primarily due to the widespread usage of “JSON :
TOSTRING()”, which serves as a fundamental functional

component of the library. As TPLs such as ‘“com.alibaba:
fastjson” are commonly used by numerous developers, the
impact of vulnerabilities in TPLs can be highly unpredictable.
Furthermore, as the frequency of calling potentially vulnerable
APIs increases, the risks within projects escalate accordingly.
Take the project “luanqiu/java8_demo” as an example.
This project directly relies on “com.alibaba:fastjson:1.2.47”
affected by CVE-2022-25845 and has invoked the potentially
vulnerable API “JSON:toJSONString (Object)” 45
times, indicating that resolving this vulnerable TPL is crucial
to mitigate its impact. This example highlights the importance
of promptly addressing vulnerability risks in TPLs when
fundamental functional APIs are potentially vulnerable.

Answer to RQ4: By leveraging VAScanner, we found
that only 21.51% of projects (with 1.83% false positive
proportion and a 95% CI of [0.71%, 4.61%]) were poten-
tially affected by vulnerable TPLs, which indicates that most
coarse-grained detection tools produce many false positives,
highlighting the need for more precise analysis.

V. THREATS TO VALIDITY

The threats to our work come from the following aspects:
(1) Possible bias of project dataset selection. Since we crawled
projects in GitHub according to star numbers, there may be
some project deviations. To alleviate it, we tried our best to
crawl a large number of real-world projects whose star numbers
range from about 70,000 to 0, to make the experiments more
representative. (2) Possible inaccuracy of vulnerable versions
of libraries. There may be inaccuracies in the vulnerable ver-
sion ranges provided by Snyk Vulnerability DB and GitHub
Advisory Database, based on NVD. This can lead to mistakenly
identifying a safe version as vulnerable [55]. To address this,
we determined vulnerable root methods by examining adjacent
vulnerable versions for patch commits. If vulnerable root meth-
ods is not found in earlier vulnerable versions, it indicates that
the version is not actually affected, thus minimizing threats
and ensuring the validity of our results. (3) Not consider other
semantically equivalent refactoring in the sifting mechanism.
Since we implement the sifting mechanism based on the AST,
which focuses on syntax and structure, it cannot comprehen-
sively capture the context of the code. We will consider detect-
ing all semantically equivalent refactoring in our future work.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

2918

(4) Possible bias of the ground truth acquisition strategy. We
avoided dynamic testing due to its complex setup and high
costs, especially for large codebases. Although vulnerabilities
were demonstrated in previous work [56], the provided reposi-
tories didn’t fully support our validation needs for ablation and
comparison experiments. Instead, we used a manual validation
approach similar to VERJava [48] and Nguyen et al. [47].
Besides, since we assume the call graph generation is accurate
and determine the validity of vulnerable APIs based on the
validity of vulnerable root methods, this strategy may affect
the validity of our results. (5) Limitation of the static analyzer.
Although we used the state-of-the-art call graph generation tool
Tai-e, it still has certain limitations because Tai-e [38] is a
static analysis framework, which inherently struggles to ac-
curately handle dynamic features, polymorphism, and runtime
dependencies, which prevents Tai-e from generating completely
precise call graphs. (6) Possible bias arising from different
vulnerability data utilized by VAScanner and Eclipse Steady.
Steady manages its vulnerability data within Project KB [49],
which does not completely match the data we collected. This
discrepancy may introduce bias in the comparison experiment
results. (7) The vulnerable root methods we have augmented
are not always vulnerable, which may affect the accuracy of
vulnerable root methods.

VI. RELATED WORK

The most related work to our paper is software composition
analysis (SCA) [30] of Java projects. Plate et al. [25] proposed
a dynamic analysis to determine if the project could reach
vulnerable methods in TPLs. It was implemented by the dy-
namic and static instrumentation techniques for unit tests and
integration tests, respectively. Ponta et al. [6], [26] advanced this
approach and presented a code-centric and usage-based tool,
named Eclipse Steady, to identify the reachability of vulnerable
methods or code. Specifically, they first conducted a dynamic
analysis to assess the reachability of vulnerable constructs.
Then, they used the set of constructs that have actually been
executed as the starting point for static analysis. Combining
dynamic and static analysis, they found all constructs poten-
tially reachable for vulnerability analysis. Despite the progress,
their dynamic analysis required unit tests or integration tests
as the input for vulnerability analysis, which limited its scal-
ability and effectiveness due to the availability and quality
of test code. Wang et al. [57] proposed a bug-driven alerting
system that focuses on security bugs. In their approach, they
directly considered the methods modified in patches as buggy
library methods. INSIGHT [58] explores the cross-ecosystem
impact of vulnerabilities, specifically determining whether a
Python or Java project utilizes a vulnerable C library based
on the forward cross-language vulnerability reachability anal-
ysis. Wu et al. [59] conducted an empirical study aiming to
explore the impact of vulnerabilities in upstream libraries on
downstream projects. They considered all modified functions in
the vulnerability patch as vulnerable functions in libraries. By
constructing call graphs for downstream projects and upstream
vulnerable libraries, they investigated whether there exists paths

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

in the projects that can invoke the vulnerable functions from
the libraries. Relying on dependency management tools such
as Apache Maven and Apache Ivy, Pashchenko et al. [24], [60]
identified dependencies with known vulnerabilities. They built
the paths from projects to their vulnerable dependencies, to
address the over-inflation problem when reporting vulnerable
dependencies. In addition, both commercial SCA services (e.g.,
Snyk [9], SourceClear [11]) and open-source SCA tools (e.g.,
GitHub Dependabot [7], OWASP Dependency Check [5]) de-
tected vulnerable TPLs based on vulnerability information from
NVD [31]. Although some SCA commercial tools (e.g., Source-
Clear [11], and BlackDuck [10]) support vulnerability reach-
ability analysis, they do not provide open source alternatives,
posing a hindrance to executing them. Moreover, their method-
ology for vulnerability reachability analysis like Steady’s, uses
call graph analysis to check if the project invokes vulnerable
APIs. Therefore, we only compared VAScanner with Steady.

There are also other researches that focused on SCA of
Android apps, usually known as TPL identification [1], [61],
[62], [63], [64], [65], [66], [67], [68], [69], [70]. Most of them
focused on identifying the libraries or library versions used by
Android apps via similarity-based or clustering-based methods.
Some studies investigated vulnerable TPLs used by projects by
detecting whether the projects contained vulnerable TPLs or
vulnerable TPL versions [1], [68], [71]. Specifically, OSSPolice
[68] maintained a feature database of TPLs, and utilized a
similarity-based method to identify whether the used library
version was vulnerable by comparing it with the vulnerable
libraries affected by CVE. Yasumatsu et al. [71] conducted
a similar work by using LibScout [66] to extract the library
versions used by APK and comparing them with vulnerable
versions. Based on TPLs’ feature generation and vulnerability
collection, Zhan et al. [1] built a vulnerable TPL database to
identify the vulnerable TPL versions used by Android apps.
These studies identified vulnerable TPLs but did not analyze
whether the apps accessed the vulnerable code. In summary,
these studies would cause false positives through analysis only
at the library level.

As for VAScanner, we maintain all vulnerable APIs for
each vulnerable TPL version. Once projects used a specific
library version, VAScanner can effectively determine whether
the used library version could threaten the projects by analyzing
if the projects used vulnerable APIs.

VII. CONCLUSION

In this paper, we proposed VAScanner, a vulnerable API
detection system for TPLs, which can precisely find vulnerable
APIs used by Java projects. VAScanner can sift out patch-
unrelated methods with high precision, and augment vulnera-
ble root methods which are absent in patch commits, to iden-
tify relatively precise and complete vulnerable root methods.
Evaluation results show that VAScanner can effectively and
efficiently detect vulnerable APIs. Meanwhile, we construct a
vulnerable API database containing 90,749 unique vulnerable
APIs (2,410,779 with library versions) with a false positive
proportion of 1.45% with a 95% CI of [1.31%, 1.59%] from 362

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DOES THE VULNERABILITY THREATEN OUR PROJECTS? AUTOMATED VULNERABLE API DETECTION FOR THIRD-PARTY LIBRARIES

TPLs with 14,775 versions, involving 502 CVEs. VAScanner
can find the vulnerable APIs in projects and assess the real
impact of OSS vulnerabilities on projects, which can assist
developers in better dealing with vulnerable third-party libraries
used by projects.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their in-
sightful comments.

(1]

[2]

[3]

(4]

(5]
(6]

[7]
(8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

X. Zhan et al., “ATVHunter: Reliable version detection of third-party
libraries for vulnerability identification in android applications,” in Proc.
IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 1695-1707.

X. Zhan et al., “Research on third-party libraries in android apps: A
taxonomy and systematic literature review,” IEEE Trans. Softw. Eng.,
vol. 48, no. 10, pp. 41814213, Oct. 2022.

The 2022 “Open source security and risk analysis,” (OSSRA) report.
Synopsys. Accessed: Jun. 2023. [Online]. Available: https:/www.
synopsys.com/software- integrity/resources/analyst-reports/open-source-
security-risk-analysis.html

“Component analysis OWASP foundation,” OWASP. Accessed:
Jun. 2023. [Online]. Available: https://owasp.org/www-community/
Component_Analysis

OWASP. Accessed: Jun. 2023. [Online]. Available: https://owasp.org/
S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source soft-
ware,” in Proc. IEEE Int. Conf. Softw. Maintenance Evolution (ICSME),
Piscataway, NJ, USA: IEEE Press, 2018, pp. 449—460.

“Dependabot,” GitHub. Accessed: Jun. 2023. [Online]. Available: https://
github.com/dependabot/dependabot-core

OSS Index. Accessed: Jun. 2023. [Online]. Available: https://ossindex.
sonatype.org/

Snyk. Accessed: Jun. 2023. [Online]. Available: https://snyk.io/
blackduck. Accessed: Jun. 2023. [Online]. Available: https://community.
synopsys.com/s/black-duck

“Software composition analysis for devSecOps,” SourceClear. Accessed:
Jun. 2023. [Online]. Available: https://www.sourceclear.com/
WhiteSource. Accessed: Jun. 2023. [Online]. Available: https://www.
whitesourcesoftware.com/

L. Zhao et al., “Software composition analysis for vulnerability detec-
tion: An empirical study on Java projects,” in Proc. 31st ACM Joint Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2023, pp. 960-972.
“Eclipse steady,” GitHub. Accessed: May 2023. [Online]. Available:
https://eclipse.github.io/steady/

Y. Wang et al., “Do the dependency conflicts in my project matter?”
in Proc. 26th ACM joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 319-330.

Y. Wang et al., “Watchman: Monitoring dependency conflicts for python
library ecosystem,” in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
2020, pp. 125-135.

Y. Wang et al., “Could I have a stack trace to examine the dependency
conflict issue?” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 572-583.

Y. Wang et al.,, “Will dependency conflicts affect my program’s se-
mantics?” IEEE Trans. Softw. Eng., vol. 48, no. 7, pp. 2295-2316,
Jul. 2021.

C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees
in the NPM ecosystem,” in Proc. 44th Int. Conf. Softw. Eng., 2022,
pp. 672-684.

L. Zhang et al., “Compatible remediation on vulnerabilities from third-
party libraries for Java projects,” in Proc. 45th IEEE/ACM Int. Conf.
Softw. Eng., Piscataway, NJ, USA: IEEE Press, 2023.

L. Zhang et al., “Has my release disobeyed semantic versioning? Static
detection based on semantic differencing,” in Proc. 37th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE ’22), New York, NY, USA: ACM,
2023, pp. 1-12.

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]

2919

L. Zhang et al., “Mitigating persistence of open-source vulnera-
bilities in Maven ecosystem,” in Proc. 38th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2023,
pp. 191-203.

S. Yang, S. Chen, L. Fan, S. Xu, Z. Hui, and S. Huang, “Compatibility
issue detection for android apps based on path-sensitive semantic analy-
sis,” in Proc. IEEE/ACM 45th Int. Conf. Softw. Eng. (ICSE), Piscataway,
NJ, USA: IEEE Press, 2023, pp. 257-269.

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,” in
Proc. 12th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., 2018,
pp. 1-10.

H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabil-
ities in open-source software libraries,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evolution (ICSME), Piscataway, NJ, USA: IEEE Press,
2015, pp. 411-420.

S. E. Ponta, H. Plate, and A. Sabetta, ‘“Detection, assessment and
mitigation of vulnerabilities in open source dependencies,” Empirical
Softw. Eng., vol. 25, no. 5, pp. 3175-3215, 2020.

K. Li, J. Zhang, S. Chen, H. Liu, Y. Liu, and Y. Chen, “PatchFinder: A
two-phase approach to security patch tracing for disclosed vulnerabilities
in open-source software,” in Proc. 33rd ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2024, pp. 590-602.

“Maven central repository,” Sonatype. Accessed: Feb. 2023. [Online].
Available: https://repol.maven.org/maven2/

“What is Log4Shell?” IBM. Accessed: Feb. 2023. [Online]. Available:
https://www.ibm.com/topics/log4shell

“Software composition analysis (SCA): What is it and does
your company need it?” Snyk. Accessed: Feb. 2023. [Online].
Available: https://snyk.io/blog/what-is-software-composition-analysis-
sca-and-does-my-company-need-it/

“National Vulnerability Database,” NVD. Accessed: Feb. 2023. [Online].
Available: https://nvd.nist.gov/

“Snyk Vulnerability DB,” Snyk. Accessed: Feb. 2023. [Online]. Avail-
able: https://security.snyk.io/

“GitHub Advisory Database,” GitHub. Accessed: Feb. 2023. [Online].
Available: https://github.com/advisories

GitHub. Accessed: Feb. 2023. [Online]. Available: https://github.com/
J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proc. 29th
ACM/IEEE Int. Conf. Automated Softw. Eng., 2014, pp. 313-324.
“Patch commit of CVE-2011-2730,” GitHub. Accessed: Jun. 2023. [On-
line]. Available: https://github.com/spring-projects/spring-framework/
commit/9772eb8

“CVE-2011-2730,” NVD. Accessed: Jun. 2023. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2011-2730

T. Tan and Y. Li, “Tai-e: A developer-friendly static analysis framework
for Java by harnessing the good designs of classics,” in Proc. 32nd ACM
SIGSOFT Int. Symp. Softw. Testing Anal., New York, NY, USA: ACM,
2023, pp. 1093-1105.

“Patch commit of CVE-2022-26884,” GitHub. Accessed: Jun.
2023. [Online]. Available: https://github.com/apache/dolphinscheduler/
commit/9717da6

“CVE-2022-40955,” NVD. Accessed: Jun. 2023. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-40955

“Patch commit of CVE-2022-40955,” GitHub. Accessed: Jun. 2023.
[Online]. Available: https://github.com/apache/inlong/commit/Oc2e9fe
“Spring-framework,” GitHub. Accessed: Jun. 2023. [Online]. Available:
https://github.com/spring-projects/spring-framework/

“Patch commit of CVE-2021-29480,” GitHub. Accessed: Jun. 2023.
[Online]. Available: https://github.com/ratpack/ratpack/commit/603e0c5
“Patch commit of CVE-2020-36319,” GitHub. Accessed: Jun. 2023.
[Online]. Available: https://github.com/vaadin/flow/commit/3c089c6
“Patch commit of CVE-2014-0193,” GitHub. Accessed: Jun. 2023.
[Online]. Available: https://github.com/netty/netty/commit/93fabld

A. Agresti and B. A. Coull, “Approximate is better than “exact” for
interval estimation of binomial proportions,” Amer. Statist., vol. 52, no.
2, pp. 119-126, 1998.

V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic method
for assessing the versions affected by a vulnerability,” Empirical Softw.
Eng., vol. 21, no. 6, pp. 2268-2297, 2016.

Q. Sun et al., “VERJava: Vulnerable version identification for Java OSS
with a two-stage analysis,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evolution (ICSME), Piscataway, NJ, USA: IEEE Press, 2022,
pp. 329-339.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://owasp.org/www-community/Component_Analysis
https://owasp.org/www-community/Component_Analysis
https://owasp.org/
https://github.com/dependabot/dependabot-core
https://github.com/dependabot/dependabot-core
https://ossindex.sonatype.org/
https://ossindex.sonatype.org/
https://snyk.io/
https://community.synopsys.com/s/black-duck
https://community.synopsys.com/s/black-duck
https://www.sourceclear.com/
https://www.whitesourcesoftware.com/
https://www.whitesourcesoftware.com/
https://eclipse.github.io/steady/
https://repo1.maven.org/maven2/
https://www.ibm.com/topics/log4shell
https://snyk.io/blog/what-is-software-composition-analysis-sca-and-does-my-company-need-it/
https://snyk.io/blog/what-is-software-composition-analysis-sca-and-does-my-company-need-it/
https://nvd.nist.gov/
https://security.snyk.io/
https://github.com/advisories
https://github.com/
https://github.com/spring-projects/spring-framework/commit/9772eb8
https://github.com/spring-projects/spring-framework/commit/9772eb8
https://nvd.nist.gov/vuln/detail/CVE-2011-2730
https://github.com/apache/dolphinscheduler/commit/9717da6
https://github.com/apache/dolphinscheduler/commit/9717da6
https://nvd.nist.gov/vuln/detail/CVE-2022-40955
https://github.com/apache/inlong/commit/0c2e9fe
https://github.com/spring-projects/spring-framework/
https://github.com/ratpack/ratpack/commit/603e0c5
https://github.com/vaadin/flow/commit/3c089c6
https://github.com/netty/netty/commit/93fab1d

2920

[49]
[50]
[51]
[52]
[53]
[54]

[55]

[56]

[57]

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 11, NOVEMBER 2024

“Home page of project ‘KB’,” GitHub. Accessed: May 2023. [Online].
Available: https://github.com/sap/project-kb

“Soot,” GitHub. Accessed: May 2023. [Online]. Available: http://soot-
oss.github.io/soot/

“Wala,” GitHub. Accessed: May 2023. [Online]. Available: https://
github.com/wala/WALA

“CVE-2020-10683,” NVD. Accessed: May 2023. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2020-10683

“Patch commit of CVE-2020-10683,” GitHub. Accessed: May 2023.
[Online]. Available: https://github.com/dom4j/dom4j/commit/a822852
“Patch commit of CVE-2021-30640,” GitHub. Accessed: Jun. 2023.
[Online]. Available: https://github.com/apache/tomcat/commit/f4d9bde
S. Dashevskyi, A. D. Brucker, and F. Massacci, “A screening test for
disclosed vulnerabilities in foss components,” IEEE Trans. Softw. Eng.,
vol. 45, no. 10, pp. 945-966, 2018.

Q.-C. Bui, R. Scandariato, and N. E. D. Ferreyra, “Vul4J: A dataset of
reproducible java vulnerabilities geared towards the study of program
repair techniques,” in Proc. IEEE/ACM 19th Int. Conf. Mining Softw.
Repositories (MSR), 2022, pp. 464-468.

Y. Wang et al., “An empirical study of usages, updates and risks of
third-party libraries in Java projects,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evolution (ICSME), Piscataway, NJ, USA: IEEE Press,
2020, pp. 35-45.

M. Xu, Y. Wang, S.-C. Cheung, H. Yu, and Z. Zhu, “Insight: Exploring
cross-ecosystem vulnerability impacts,” in Proc. 37th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2022, pp. 1-13.

Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin, “Understanding the
threats of upstream vulnerabilities to downstream projects in the maven
ecosystem,” in Proc. IEEE/ACM 45th Int. Conf. Softw. Eng. (ICSE),
2023, pp. 1046-1058.

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulndreal: A methodology for counting actually vulnerable depen-
dencies,” IEEE Trans. Softw. Eng., vol. 48, no. 5, pp. 1592-1609,
May 2022.

M. Li et al., “LibD: Scalable and precise third-party library detection
in Android markets,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), 2017, pp. 335-346.

X. Zhan et al., “Automated third-party library detection for android
applications: Are we there yet?” in Proc. 35th IEEE/ACM Int. Conf.
Autom. Softw. Eng. (ASE), 2020, pp. 919-930.

J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: Reliable
identification of obfuscated third-party Android libraries,” in Proc. 28th
ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), 2019.

Y. Zhang et al., “Detecting third-party libraries in Android applications
with high precision and recall,” in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evolution Reeng. (SANER), 2018, pp. 141-152.

Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and accurate
detection of third-party libraries in Android apps,” in Proc. 38th Int.
Conf. Softw. Eng. Companion (ICSE-C), 2016, pp. 653-656.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in Android and its security applications,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), 2016, pp. 356-367.

Y. Wang, H. Wu, H. Zhang, and A. Rountev, “ORLIS: Obfuscation-
resilient library detection for Android,” in Proc. 5th Int. Conf. Mobile
Softw. Eng. Syst. (MOBILESoft), 2018, pp. 13-23.

R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 2169-2185.
K. Chen et al., “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the Google-Play scale,” in Proc. 24th USENIX Security
Symp. (USENIX Security 15), 2015, pp. 659-674.

L. Li, T. Bissyandé, J. Klein, and Y. L. Traon, “An investigation into
the use of common libraries in Android apps,” in Proc. IEEE 23rd Int.
Conf. Softw. Anal., Evolution, Reeng. (SANER), 2016.

T. Yasumatsu, T. Watanabe, F. Kanei, E. Shioji, M. Akiyama, and
T. Mori, “Understanding the responsiveness of mobile app developers
to software library updates,” in Proc. 9th ACM Conf. Data Appl. Secur.
Privacy, 2019, pp. 13-24.

Fangyuan Zhang received the B.Sc. degree in com-
puter science from Jilin University, in 2021. She is
currently working toward the Ph.D. degree with the
College of Computer Science, Nankai University.
Her research interest includes software supply chain
security.

Lingling Fan is an Associate Professor with
the College of Cyber Science, Nankai University,
China. In 2017, she joined Nanyang Technological
University (NTU), Singapore as a Research Assis-
tant and then had been a Research Fellow of NTU
since 2019. Her research interests include program
analysis and testing, and software security. She got
four ACM SIGSOFT Distinguished Paper Awards
at ICSE 2018, ICSE 2021, ASE 2022, and ICSE
2023.

Sen Chen (Member, IEEE) is an Associate Pro-
fessor with the College of Intelligence and Com-
puting, Tianjin University, China. Before that, he
was a Research Assistant Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
interest includes software security. He got six ACM
SIGSOFT Distinguished Paper Awards. For more
information, see https://sen-chen.github.io/.

Miaoying Cai received the B.Eng. degree in infor-
mation security from Nanjing University of Aero-
nautics and Astronautics, in 2023. She is currently
working toward the Ph.D. degree with Nankai Uni-
versity. Her research interests include mobile secu-
rity and web security.

Sihan Xu received the B.Sc. and Ph.D. degrees in
computer science from Nankai University, in 2013
and 2018, respectively. For her research, she spent a
year with the National University of Singapore. She
is currently an Associate Professor with the College
of Cyber Science, Nankai University. Her research
interests include intelligent software engineering
and Al security.

Lida Zhao is currently working toward the Ph.D.
degree with Nanyang Technological University. His
research interests include software security and
software engineering, with a particular emphasis
on open-source supply chain security and software
composition analysis.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:52:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/sap/project-kb
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://github.com/wala/WALA
https://github.com/wala/WALA
https://nvd.nist.gov/vuln/detail/CVE-2020-10683
https://github.com/dom4j/dom4j/commit/a822852
https://github.com/apache/tomcat/commit/f4d9bde
https://sen-chen.github.io/.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

